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Abstract 

A new technique for the estimation of autoregressive filter parameters of a non- 

Gaussian autoregressive process is proposed. The probability density function of 

the driving noise is assumed to be known. The new technique is a two-stage pro- 

cedure motivated by maximum likelihood estimation. It is computationally much 

simpler than the maximum likelihood estimator and does not suffer from conver- 

gence problems. Computer simulations indicate that unlike the least squares or 

linear prediction estimators, the proposed estimator is nearly efficient, even for 

moderately sized data records. By a slight modification the proposed estimator 

can also be used in the case when the parameters of the driving noise probability 

density function are not known. 



I. Introduction 

Estimation of the parameters of autoregressive (AR) processes has been widely- 

addressed [Box and Jenkins 1970], [Kay 1986]. These processes are modeled by an 

all-pole filter excited by a white Gaiissian process, also referred to as the driving noise. 

The class of AR processes driven by white non-Gaussian noise has not received much 

attention, although they are capable of representing a wide range of physical processes 

[Sengupta and Kay 1986]. Previous research has shown that it may be possible to esti- 

mate some of the parameters characterizing a non-Gaussiem AR process more precisely 

than those of a Gaussian AR process with the same power spectral density (PSD). 

Specifically, the Cramer-Rao bound (CR bound) for the variances of the estimtators for 

the AR filter parameters [Martin 1982] is lower in the non-Gaussian case than in the 

Gaussian case [Pakula 1986], [Sengupta 1986]. Yet utilization of this theoretical result 

has been limited. The method of maximum likelihood, which is the most widely consid- 

ered approach for AR parameter estimation, is usually associated with computational 

complexity and convergence problems. In the case of non-Gaussian PDF's maxuniza- 

tion of the likelihood function leads to a set of highly non-linear equations [Sengupta 

and Kay 1986] in contrast to the Gaussian case where the equations become linear 

after a few simplifying assumptions. It is the solution of these non-lmear equations 

which results in the computational complexity of the Tna-yimmn likelihood estimator 

(MLE). Iterative techniques which are often used to solve these equations suffer from 

convergence problems for short data records. 

Several non-Gaussian PDF's have been proposed to model the driving noise. Zero- 

mean symmetric PDF's having tails heavier than the Gaussian tail are of particular 

interest becatise they may model a nominally Gaussian background with occasioned im- 

pulses. Such noise processes aie encountered in low-frequency atmospheric commimica- 

tions [Bernstein 1974], sonar and radar problems and so on. Examples of heavy-tailed 

PDF's are the mixed-Gaussian PDF, the Johnson family and Middleton's class A and 
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B PDF families. All of them lead to a complicated likelihood function which is difficult 

to maximize. 

This paper suggests a method to estimate the AR filter parameters of a non- 

Gaussian process in a computationally simple way. Essentially it is a two-stage proce- 

dure based on an approximation of the MLE. The resulting estimator is asymptotically 

efficient in the sense that its variance approaches the CR bound for large data records. 

The mixed-Gaussian PDF is vised to illustrate the approach and to demonstrate some 

of the finer aspects. 

The paper is organized as follows. Section 11 gives an mterpretation of the MLE 

which forms the basis for the development of the new estimator. Several special cases 

are discussed to illustrate the central argument. Section El suggests an approximation 

to the MLE based on this interpretation. Section IV actually implements such an 

estimator for the case of a mixed-Gaussian distribution. Section V discusses the case 

when some of the parameters of the noise PDF are unknown while section VI reports 

the results of computer simulations. Section Vn suimnarizes the main results. 

n. An Interpretation of the MLE 

Consider N observations of an AR(p) process 
p 

Xn = -'^ajXn-j+Urt, n = l,2,'--N (1) 
j=i 

where the driving noise Un has the PDF /(u„; 0) dependent on the parameter vector 

0. / is assumed to be an even function and hence zero mean. It is also assumed that / 

has tails heavier than a Gaussian PDF g having equal variance, i.e., there is a number 

U such that 

/(un)>(7(u„)       for|un|>t^ (2) 

subject to the constraint 
/+00 /•+00 

ul f{Un)dUn =   / ul g{Un)dUr, 
-oo y-oo 



The log likelihood function for the AR filter parameters is given by the joint PDF 

of {xi,X2, • • •, xjv} when the Xt's are replaced by their observed values. This is difficult 

to evaluate. It is a common practice to replace the exact likelihood function by the 

conditional liklihood of {xp+i,Xp+2,-• ■ ,XN} given {xi,X2,-• • ,Xp} for the purpose of 

maximization over the parameters. It can be easily shown [Box and Jenkins 1970] that 

the conditional log likelihood function is given by 

N 

bif=   J]   ln/(u„;0) 
n=p+l 

where OQ = 1. Differentiating with respect to ay 

"'•=ELo'"••*''-■ 

dUn 
daj 

n=p+l 

N 

daj 
"''=Er=o''''—• 

r(un;0) 

=    "T   X       u     ^'^^"'^ / ^   •*'n—j "n       77        AT 
/'(un;0) 

n=p+l 

Jf 

n=p+l 

where 

r(un) 
/'(un;0) 

tt« Xn-i 

u«/(un;0) 

(3) 

(4) 

(5) 

The MLE of a = [aj 02 • • • Op] is found by solving 

tr 
J^   Xn-yu„r(u„) 

n=p+l 
= 0,        i = l,2,---p (6) 

provided 0 is either known or replaced by its MLE 0 in order to calculate T{un) from 

(5). From this point onwards 0 will be assiimed to be known. It will be shown in 

section V that for some PDF's the method to be described can be implemented with 
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0 replaced by a reasonable estimate. Note that since / is assumed to be a symmetric 

PDF, /' is an odd function of u„. Therefore f'jun is even in Un and V{un) given by 

(5) is an even function. T[un) is assumed to exist over the domain of /(u„; 9). (6) caji 

also be written as 

P N 

t=0      n=p+l 
= 0,        y = l,2,---p (7) 

For the special case of a Gaussian PDF with variance a^, /'// = -U^/CT^. There- 

fore r(un) = 1/cr^ and (7) reduces to 

P N 

Y,(^    X)   ^n-iXn-j=0, i=l,2,---p (8) 
t=0      n=p+l 

which can be recognized as the covarianct method of linear prediction, known to be 

approximately the MLE in the Gaussian case. It is the solution of a Imear least squares 

(LS) problem [Box and Jenkins 1970], [Kay 1986] 

mm 
n=p+l \ y=i / 

(9) 

(7) resembles the solution of a LS problem except for the weighting factors r(u„). Note 

that the inherent dependence of Un (and hence r(u„)) on a, the AR filter parameters, 

makes it a non-linear problem. If, however, the argument of T is czdculated using a fixed 

(and hopefully an approximate) value of a, (7) becomes the solution of the following 

weighted LS problem 

N      , p v2 

"^  H [''^^H°-i''^-n^^^^) (10) 
n=p+lV y=i / 

Un, a quantity expected to be close to u^ is defined by (l) 

p 

u„ = J^ayxn-j, n = p+l,p + 2,---N (H) 



where some fixed approximate values of the AR filter parameters are used, CQ is defined 

to be imity. (10) is minimized by (7) with r(u„) replaced by r(u„) which reduces 

to a set of linear equations whose unique solution can be expected to be close to 

the MLE of a. The resulting estimator should be much better than the unweighted 

LS estimator (resulting from (9)) because it retains the general shape of r(u„) by 

approximating it with T{un). The sequence {un | p + 1 < n < AT} can be generated 

by passing {xp+i,Xp+2,-• ■ ,XN} through a moving average (MA) filter as per (11) 

with coefficients obtained from a preliminary stage of least squares estimation {e.g., by 

covariance method). In other words, tin becomes an estimate of the nth sample of the 

drivmg noise based on an LS estimate of the filter parameters such as the covariance 

method. This approach leads to an approximate MLE which is described in the next 

section. 

It is of mterest to know how the terms of (10) are actually weighted. Three symr 

metric PDF's which are commonly used to model heavy-tailed non-Gaussian processes 

[Czamecki and Thomas 1982], [Middleton 1977], [Johnson and Kotz 1971] are now con- 

sidered. The plots of the weighting fimction r(u) for these PDF's provide insight into 

the structure of the MLE. 

Mixed-Gaussian Model: The mixed-Gaussian PDF has received considerable atten- 

tion in situations where the underlying random process is characterized by the presence 

of occasional impulses in an otherwise Gaussian process. The PDF is given by 

f{u) = {l-€)EB{u)+eEi{u),        0<6<1 (12) 

where EB and Ei are Gaussian PDF's with parameters [fiB,a%] and [/Lt/,a|], respec- 

tively. Assuming a% « a], the fraction c can be thought of as the degree of con- 

tamination of the low-variance Gaussian process with PDF EB by the high-variance 

component with PDF Ei. Only the zero-mean case [HB =0,/J.I = 0) will be considered 
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here. (12) is explicitly written as 

/(") = -1=T^  ^ + -7^^  ^ (13) 

For this PDF r(u) can be shown to be 

1-6 -i,l^y          e       _ I f u ^^ 

Y(u)-        "v^^ PV2np  

l-£ _:^  ,       e       _ii 
_   1   ^¥ Pv/2^ 

a|  1-6 _ui  ,      e      _ui (14) 

v/27r v^Trp 

where p = aj/al and u = U/CTB- Figure 1(a) plots r(u)/r(0) vs. u (= u normalized 

by as) for p = 100. Curves for different values of e are overlayed. Figure 1(b) plots 

r{u)/r(0) vs. u for e = 0.1 and different values of p. The curves show that r(u) acts 

as a limiter. The squared errors in (10) with large values of tin are suppressed. This 

makes intuitive sense because large values of u„ {spikes at the input of the AR filter) 

would otherwise dominate the sum of the squares and consequently the information 

contained in the rest of the terms will be lost. Quantitatively, from (14) with p » 1, 

r(0) « 1/0% and r(u) ->• 1/aj as u -^ 00, i.e., very small and very large terms in (10) 

are scaled in the inverse ratio of background and interference noise powers, respectively. 

This is in accordance with analogous results in optimal weighted least squares theory 

[Sorenson 1980]. 

Middleton'3 Class A Model: Another physically motivated model to represent 

nominally Gaussian noise with an impulsive component is Middleton's class A PDF 

given by the infinite sum 

m=0 

where 0 < A < 1 and Em{u) is a zero-mean Gaussian PDF with variance c^ given by 

'-="1^8- (!«' 
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with B a constant. The Gaussian component corresponding to m = 0 has the least 

variance and can be thought of as the background process. The weights of the higher 

order terms can be controlled by the constant A. A small value of A will diminish the 

contribution of the contaminating high-order terms. The constant B can be used to 

adjust the variance of these components. The overall variance of the Middleton's class 

A PDF is a^. T{u) can be written in this case as 

r(u) = ^^^^^-^ = ^=°   "^  M7^ 

^ m! /-^ amm\ 
m=0 »n=0 

Figures 2(a) and 2(b) plot r(u)/r(0) vs. u for this PDF for different values of A and 

B. a^ is assumed to be unity. These curves also are observed to be similar to a limiter 

curve. A larger value of A implies an mcreased presence of high-variance components. 

Therefore a snaaller threshold is necessary above which the squared terms of (10) need 

to be down-weighted in order to preserve the information in the remziining terms. This 

is reflected in Figure 2(a) which clearly exhibits a smaller threshold for a higher A. 

Also, a larger value of B implies less difference in the variances of the Gaussian terms 

corresponding to m = 0 and m > 0, i.e., a smaller deviation from Gaussianity. A 

smaller value of B indicates more non-Gaussianity and hence a smaller threshold is 

necessary, which is confirmed by Figxire 2(b). 

Johnson Fajnily: The Johnson family of PDF's is one of the heavy-tailed families 

obtained by applying a transformation to a Gaussian random variable. If t; is a Gaus- 

sian random variable with mean zero and variance one, then the transformed random 

variable 

u = t sinh I - I 

has a PDF belonging to the Johnson family given by 

/(u)=    ' 
ty/2Tr 
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t is chosen to be 

t = 
lo' 

so that the density has a variance cr^. The parameter i can be used to control the 

heaviness of tail. A smaller value of t implies a heavier tail. The PDF approaches a 

Gaussian one as 5 —> cx5. r(u) can be written in this case as 

r(u) = 
i2 1 + 

-1 

+ 1 + -Tr f2 (19) 

Figure 3 plots r(u)/r(u) vs. u/a for different values of t. A larger value of i indicates 

less deviation from Gaussianity confirmed by a gradual decrease of the curve from the 

value at u = 0. Smaller values of t correspond to a sharper transition and a smaller 

threshold. 

All these illustrations show that the MLE given as a solution of (7) actually 

tfownweights the larger squared terms and may therefore be well approximated by 

an appropriate weighted LS esthnator. The following section elaborates on this point. 

It should also be noted that r(u) is positive in all the above cases. This is true for any 

symmetric PDF which is a monotonically decreasing function of u for positive values 

of u, as may be verified from (5). Most of the common PDF's have this property. 

m. An approximation to the MLE 

It was suggested in the previous section that the problem of solving the set of 

highly non-linear equations (7) can be replaced by solving a set of lintar equations if 

the weighting function r(u„) is known or can be estimated for each n. Specifically, this 

suggests a two-stage procedure. The first stage involves computation of the unweighted 

LS estimates of the unknown filter parameters. These crude estimates can be used to 

estimate Un as per (11) and hence r(un) required for the second stage of weighted LS 

estimation.   This procedure would eliminate convergence problems and much of the 
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computational complexity associated with the MLE. Yet it is apparent from (14), (17) 

and (19) that even if u„ were known computation of the weighting function might be 

difficult for many heavy-tailed non-Gaussian PDF's. Typically the weighting function 

involves computation of transcendental functions such as exponentials which may be 

computationally burdensome. The problem would be sunplified considerably if T could 

be approximated by a simple function whose characteristics depended on the PDF 

parameters. A possible approximation of the weighting curves shown in Figures 1-3 is 

the Butttrworth "filter" 

r(u)=       ^'    ^+K2 (20) 
1 + 

u 

where Ug denotes the '3 dB cutoff', /? is the order of approximation (not necessarily 

an integer) and iiCi > 0 and JFC2 > 0 can be used to match f with T for u = 0 and 

u —>^ oo. All these parameters can be iised to produce an accurate approxiination of 

the usually complicated function T. The second stage of LS can therefore be simplified 

by minimizing (10) with T replaced by f. This yields 

2^a»f    Y,   Xn_.X„_yr(Un))=-    J^    XnX^_yf(Un), J=l,2, 
1=1       \n=p+l / n=p+l 

which in matrix form is 
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(^ 
N 

^    Xn-lXn-lf(Un) ^    Xn-lXn-2^{Un) 
=p+l n=p+l 
^ AT 

^    Xn_2a:n-if(Un) ^    In-2Xn-2f (u^) 
n=p+l n=p+l 

X]    ^ri-pXn-if[Un) ^    X„_pX„_2f(t2n) 
\n=p+l n=p+l 

N _ \ 

n=p+l 
N 

2J   3:n_2X,i_pf(u„) 
n=p+l 

N 

y^    2:n-pX„_pf(Un) 
n=p+l 

02 

VflpV 

y 

2_^   XnXn-ir(u„) 
n=p+l 

^    XnXn_2f(Un) 
n=p+l 

AT 

]X    XnXn-pf(u„) 

(21) 

X is a symmetric ■py.p matrix which is positive semidefinite.  To show this assimie 

b = [61 62 • • • 6p] is a vector of real numbers. Then, 

b^Xb = ^^6,6y    Y.   X„_,Xn-yf(«„) 
t=lj=l n=p+l 

=    Y   f(Un) J])^6,6yXn-,Xn-> 
■ n=p+l t=iy=i 

JV To n2 

n=p+l 
Y^biXn-i 
t=l 

>0 

since the weights f(u„) are always positive (see (20)). (21) can be solved in 0{p^) 

operations. A Cholesky decomposition cjin be iised to reduce computation. This is 

in contrast to the unweighted least squares, for which it is possible to estimate the 
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parameters in 0{p^] operations [Morf et d 1977]. In summary, the proposed technique 

is 

STEP I: Use covariance method ((21) with f(un) = 1) to obtain initial estimates 

of a. 

STEP U: Generate the sequence u„ by passing {xp+i,Xp+2, ■■■,XN} through the 

MA filter whose coefficients are as estimated m step I, as given by (11). 

STEP lU : Select the curve f (20) by choosing appropriate values ofuc, /3, Ki and 

K2 from the known values of the PDF parameters (0). 

STEP IV : Solve for a from (21). 

Step m will be different for different non-Gaussian PDF's. The following section 

addresses this part of the problem for the specific case of a mixed-Gaussian distribution. 

rV. Weighted LS for Mixed-Gaussian PDF 

Performance of the weighted LS estimator described in the previous section is 

expected to be dependent on how well the curve f can approxunate the true weighting 

curve r. Therefore the parameters of f, namely, u^, /?, Ki and K2 should be chosen 

properly for every set of values of the parameters of the PDF, i.e., 0. In the mixed- 

Gaussian case the parameters e and p determme the shape of T (see Figures 1(a) and 

1(b)). Ki and K2 can be foimd as a fimction of these two parameters by matching the 

values of r and f for u = 0 and u -> 00. It follows from (14) assuming a% = 1 that 

r(0) = ^       and       r(oo)^l 
(1-6) + -^ P 

Also, f (0) =Ki+K2 and f(oo) ^ K2. Therefore 

■(1-^) + 
iCi = Py/P 

1(1-^) + -^ 
-       and       K2 = - (22) 
P p ^    ' 
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Fortunately, Ki and K2 are obtained as explicit closed-form functions of e and p. cr% 

has been assumed to be unity without loss of generality, since it will only change Uc by 

a scale factor and furthermore the weighting curve need only be determined to within 

a scale factor for use in (21). Uc can be chosen to match f and T at u = Uc. It is found 

by solving 

n^c) = ^+K2 (23) 

where T and is defined by (14). T being a complicated function, (23) can only be 

solved by a search algorithm. Figure 4 plots Uc, as obtamed by solvmg (23), vs. c for 

different values of p. The curves can be explained by interpreting the mixed-Gaussian 

PDF as one arising from a nominally Gaussian noise contaminated by a high variance 

Gaussian process. A small value of e implies little contammation by the high variance 

population and therefore the limiter can allow for reasonably large values of Un and 

hence a large Uc results. On the other hand as e increases, increased interference from 

the high variance population is compensated for by making the threshold Uc smaller 

so as not to allow large values of Un suppress the information contained in the other 

terms. Figure 5 plots Uc vs. p for different values of e. It shows that the threshold 

is minhnum for /> « 10. If p is large, the contaniinating population would mtroduce 

very large spikes and therefore a high threshold would suffice to suppress them. For 

a smaller ratio of a] to a% a smaller threshold is necessary. When aj and 0% are of 

the same order {p < 10), it becomes difficult to distinguish between contributions from 

the two populations and therefore most of the terms should be equally weighted, which 

is accomplished by causing the threshold to be large, as can be verified from Figure 

5. An interesting special case is p = 1 when the mixed-Gaussian PDF degenerates to 

a Gaussian PDF (r(un) = l/a| for all <7%). The threshold goes to 00 and all the 

terms are equally weighted. Once the threshold is calculated, the most appropriate /? 

for a given c and p can be found by a least squares curve fitting method. Specifically, 

a suitable range of u (where r(u) is significantly positive) is divided in 1000 equally 
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spaced points. The sum of {T{u) - f (u))^ evaluated at these points is then minimized 

with respect to /?. Figure 6 plots /? vs. e for different values of p. It shows that a sharp 

cutoff (i.e., a high value of /3) is necessary only when the contaminating process has 

high power and it appears very rarely (large p and small e). 

A typical approximation of T{u) by f (u) has been plotted in Figure 7. Both the 

functions are plotted vs. u m the same scale. a% = 1, p = 100 and e = 0.1 were 

assumed. The corresponding threshold Uc was 3.0224 and the most suitable (3 was 

9.422. Ki = 0.979 and iC2 = 0.01 were obtained from (22). The approxhnation appers 

to be reasonably accurate. In general, accuracy of the approximation will depend on 

the values of p and e. 

V. The case of unknown PDF parameters 

It was assumed for the weighted LS estimator described in section HI that 6, the 

vector of noise PDF parameters was known. This was necessary to in order to determme 

the weightmg function to be used in (21). If it is partially or completely unknown, it 

has to be estimated. This will xmdoubtedly degrade the performance of the estimator. 

It will be shown in the next section that when the PDF parameters are known, the 

estimator performzince of the weighted LS estimator proposed nearly attains the CR 

bound. Alternately, the performance is as good as the MLE. Hence for the purpose of 

discxission the weighted LS estimator can be considered to be asymptotically efficient 

when the PDF parameters are known so that T is known. It is thus of interest to 

determme the sensitivity of this performance to changes in T due to estimation errors 

m the unknown PDF parameters. One way of quantifying this is to determine the 

efficiency of the correspondmg AR filter parameter estimator as the PDF parameters 

vary from the true values assumed for F. The problem is now examined from the 

viewpoint of robust M-estimators [Martin 1979], [Martui and Yohai 1984]. 

The origmal set of non-linear equations (6) to be solved for the MLE (which are 
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approximated by a set of linear equations in the weighted LS method) can be written 

as 
N / P \ 

^   x„_y<^(z„+^a,x„_,) = 0,        j = l,2,---p (24) 
n=p+l \ i=i / 

where (^(u^) = Ur,T{un) = -/'(un;0)//(un;0 is an odd function, ff T{un) is as 

defined in (5) with the true PDF parameters then the solution of (24), if it exists and 

is the unique maximum of the likelihood function, is the MLE of a (assuming known 

PDF parameters), ff T{un) is replaced by a different limiter curve f (un), the resulting 

estimator is termed an M-estimator [Huber 1981], When the true PDF is not perfectly 

known, ^ (or T) has to be selected on the basis of other considerations, e.g., making 

the estimator performance less sensitive to the PDF. The performance of an estunator 

so designed is not as good as the MLE (which is based on the perfect knowledge of 

the PDF), but asstmiing f is well chosen its performance does not deteriorate much if 

the actual PDF is somewhat different from the PDF which produces best performance 

for a particulax selection of <f>. Such an estunator exhibits efficiency robustness if the 

performance is evaluated in tenns of asymptotic efficiency. The asymptotic efficiency 

of an estimator of a can be quantified by [Anderson 1971] 

EFF{a,f) = det7-^(a) 
(25) 

det7(a) 

where /oo(a) is the information matrbc for a and V(a) is the asymptotie covariance 

matrbc of a. It can be shown that 0 < EFF{A, /) < 1 and the upper boimd is reached 

if and only if 7(a) = Iaa{a.). In the case of M-estunates, assuming the PDF / is 

symmetric, (25) reduces to [Martm 1979] 

i2 

^^^(-fl=Si (^^) 
where 

2-1 

^/ = ^[(^)] (27) 
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The asymptotic efficiency given by (26) depends on how well the function (f) matches 

the optimal one for a given PDF /. It attains the upper bound of unity if only if 

4> = -/'// or alternately (24) represents the MLE equations. 

For a Gaussian M-estimator (which assumes the underlying PDF to be Gaussian 

with zero mean and variance a^ for the purpose of choosing (f) (j) = -f If = "n/o-^. 

Therefore the estimator reduces to a LS estimator. In this case, assummg the true PDF 

to be /, (26) implies 

^^^(^'/) = ^ (28) 

It is known [Sengupta and Kay 1986] that for all symmetric PDF's a'^If > 1 with the 

equality holding only for the Gaussian PDF. Therefore for all symmetric non-Gaussian 

PDF's efficiency of the LS estimator is less than tmity. In fact the LS estimator is 

known to be severely lackmg in efficiency robustness, as verified by Figures 8, 9, 10 

and 11 which plot the asymptotic efficiency of the LS estimator given by (28) for the 

three non-Gaussian PDF's described m Section 11. A small deviation from Gaussianity 

is observed to produce a large drop in asymptotic efficiency. For example, in the 

case of a mixed-Gaussian PDF, it can be observed from Figure 8 that /j = 100 and 

c = 0.1 results in a drop by a factor of 10 m the asymptotic efficiency from the value 

at e = 0 (which corresponds to a Gaussian PDF). Figure 9, which plots the asymptotic 

efficiency of the LS estimator for a mixed-Gaussian process vs. p for different values 

of 6, shows that the estimator loses efficiency for moderately large values of p, even 

when 6 is reasonably small. In the cases of Middleton's class A and Johnson's families 

Gaussianity corresponds to large values of B and t, respectively. In both cases the 

asymptotic efficiency of the LS estimator drops substantially when these parameters 

are smaller (see Figures 10 and 11). 

It is expected that a wiser choice of (f> (or T) in (24) would result in a better 

M-estunator. If the PDF parameters (0) were known, the choice T - -f'/uf or a 

suitable approximation T thereof would have been optimal.   Since these parameters 

16 



are unknown, a selection of f which is quite appropriate for one value of 0 may not 

be suitable for other values of it. If such a mismatch does not reduce the asymptotic 

efficiency substantially, the corresponding M-estimator would be considered insensitive 

to small variations in the PDF parameters. This will be examined by plotting the 

asymptotic efficiency of a nominal M-estimator as the true PDF parameter values vary 

from the values for which the chosen estimator is optunal. The weighted LS estimator 

proposed ui section m may be viewed as an M-estimator where u„ (the argument of 

T) is replaced by a preluninary estimate Un. Therefore the asymptotic performance 

(in terms of efficiency) of the M-estimators, which will now be described, should be a 

good indication of the sensitivity of the weighted LS estimator to changes in f due to 

estimation errors in tmknown PDF parameters. 

Figme 12 plots the asymptotic efficiency of a typical M-estimator for different 

mixed-Gaussian PDF's. A fixed limiter curve with u^ = 3, /3 = 10, Ki = 0.98 and 

K2 = 0.01 is used. In this case 

<f>{Un) = «nf («„) = -2:??!^ +0.01tt„ 

1 + 
(^«' 

3 

(J% is assumed to be unity and the asymptotic efficiency (calculated from (26) and (29) 

by numerical integration) is plotted vs. c for different values of p. The curve corre- 

sponding to /) = 100 exhibits a maximum (efficiency « 1) at c = 0.1 demonstratmg that 

a mixed-Gaussian PDF with e = 0.1 and p = 100 is most suitable for this M-estimator. 

In fact, these values of c and p were actually used to determine f as described in Section 

rV and resulted in (29). For values of c from 0 to 0.5 its asymptotic performance is 

reasonably good. The asymptotic efficiency is 0.98 at c = 0 (i.e., the PDF is Gaussian) 

and 0.90 at c = 0.5. Therefore for a truly Gaussian PDF this estimator will be 98% as 

efficient as a LS estimator (which has efficiency of one for a Gaussian PDF). This can 

be thought of as a 2% premium [Martin 1979] for a 90% protection or coverage against 

up to 50% outliers. Figure 13 plots the asymptotic efficiency of the same esthnator vs. 
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p for different values of e. It shows that although this particular choice of <^ is most 

suitable for e = 0.1 and p = 100, the asymptotic efficiency is more than 90% up to 

p = 10000 for values of e less than 0.1. Improvement over the curves of Figure 9 is 

quite apparent. 

€ and p were assumed to be known in the derivation of the weighted LS estimator. 

Figures 12 and 13 show that the asymptotic efficiency of the corresponding M-estimator 

is rather insensitive to these parameters. Assuming that the result extends to the 

weighted LS estimator, it implies that when these parameters axe not known, they can 

be approximated by crude estimates for the purpose of selecting f in step m of the 

suggested estunation procedure. To be more precise, the parameters of f (namely, Uc, 

/?, Ki and K2) can be stored in a table as functions of the unknown PDF parameters 

and the proper values can be chosen by mterpolation from these tables. Hardware 

memories can be used for this purpose for on-line estimation. The resulting estimator 

will be adaptive in nature because it would select a limiter curve depending on a crude 

estimate of the unknown PDF parameters. This result adds flexibility to the method 

and also creates a possibility of estimating the imknown PDF parameters more precisely 

once the AR filter parameters are estimated accurately. 

The mixed-Gaussian PDF is not the only PDF which provides such an opportunity. 

Figures 14 and 15, which plot the asymptotic efficiency of the M-estimator (calculated 

with a typical selection of f ui each case) for Middleton's class A and Johnson families, 

suggest the existence of shnilar results in the cases of other non-Gaussian PDF's. The 

parameters of f chosen for Figure 13 were Uc = 1.8, P = T,Ki= 0.955 and K2 = 0.045, 

which are quite suitable for Middleton's class A PDF with A = 0.05 and B = 1.0. For 

smaller values of B the M-estimator shows marked improvement over the LS estunator 

(compare Figtire 10). The parameters of f for the Johnson's family were chosen to 

be Uc = 1.4, 13 = 2, Ki = 0.98 and K2 = 0.02. These are suitable for Johnson's 

PDF with t = 1.5. A comparison of Figures 11 and 15 reveals that the M-estunator 
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does not lose efficiency as fast as the LS estimator as t becomes smaller {i.e. the 

PDF becomes more non-Gaussian). These are instances of the M-estimator being 

insensitive to small variations in some of the PDF parameters. It is not clear how 

well these results apply to the weighted LS estimator, and hence its improvement over 

the LS estimator may be somewhat less than what the curves show. The central 

argument is that the proposed estimator improves the efficiency robustness of the LS 

estimator by weighting the squared terms, and it also reduces computation over the 

M-estimator by approximatmg the argument of f. Its ability to handle the case of 

unknown PDF parameters makes it more attractive m practice than an M-estimator 

which requires the solution of non-linear equations. The following section presents the 

results of computer simulations which justify the approximations made in deriving the 

weighted LS estimator. 

VI. Simulation of the perforxnance of the weighted LS estimator 

Two typical AR(4) processes [Kay 1986] was chosen for computer simulations. The 

parameters are given in Table A. Process I is broadband while process U is narrowband. 

The underlying PDF is assumed to be mixed-Gaussian with cr| = 1 and p = 100. The 

mixture parameter is e = 0.1. The AR process was generated by passing a white mixed- 

Gaussian process through a filter, blowing sufficient time for the transients to decay. 

The white process was generated by randomly selecting from two mutually independent 

white Gaussian processes with PDF's EB ajid Ej (having variances a| and a] = pa% 

respectively) on the basis of a series of Bernoulli trials with probability of success c. 

Thus a random variable could be expected to come from the background population for 

(1-c) fraction of times and from the coniaminating population for e fraction of times. 

In ax:cordance with the discussion in the previous section one of the PDF parameters, 

namely e, was assumed to be unknown, e is linearly related to the overall variance a^ 
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of the PDF, 

cT2=a|[(l-e) + ep)] (30a) 

I.e., 

,2 
C = ^-1 p-1   .1     - (306) 

It was suggested in the previous section that a crude estimator of e can be used to 

select the proper weighting curve. In this case the driving noise power, i.e., a^ was 

estimated along with a in the first step of unweighted LS estimation using covariance 

method (see (8)) and c was calculated from this estimate using (30b). 

Table B shows the sample means and sample vaxiances of the AR filter pjurameter 

estimators obtained by the exact evaluation of the approximate MLE. The MLE is 

foimd by the foiir-dimensionaJ optimization (for the four AR filter parameters) of the 

conditional likelihood function as reported in [Sengupta and Kay 1986]. A Newton- 

Raphson iterative procedure was used for this purpose, with initial conditions obtained 

from a preluninary stage of least squares estimation, namely, the Forward-backward 

method [Kay 1986]. The value of e used in (6) was as obtained from a^ in the first stage 

of LS estimation. 1000 data points were used and the result is based on 500 experiments. 

The results, as summarized in Table D, can be compared to the performance of the 

Forward-Backward estimator (see Table C) and the CR bound. The MLE achieves 

the CR bound while the variances of the Forward-Backward estimators are larger by 

a factor of 10. This agrees with the theoretical prediction of previous section, as the 

asymptotic eflBiciency of an LS esthnator, given in this case by (28), is 0.106 « 1/10. 

Table D reports the performance of the weighted LS estimator. The loss of performance 

is only marginal, as is verified by comparing it to the performance of the exact MLE. 

Evaluation of the exact MLE is not only computationally intensive, but it eilso 

suffers from convergence problems. For 1000 data points \% of the experiments failed 
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to converge. For short data records [e.g., N < 250) it almost never converges. However 

the weighted LS does not suffer from this problem. The performance of the unweighted 

and weighted LS estimators for N = 100 is summarized in Tables E and F, respectively, 

along with the CR bound. The unweighted LS (Forward-Backward) estimator continues 

to be off from the CR bound by a factor of 10 for Process L The offset increases to 

a factor of 15 for Process 11. The weighted LS suffers from a slight degradation of 

performance: it is off from the CR bound by a factor of 2 for Process I and by a 

factor of 2.5 for Process 11. This is probably due to the increased inaccuracy of the 

simplifying approximations for shorter data records. It still exhibits improvement over 

the Forward-Backward estimator. It is also seen to have less bias as compared to the 

Forward-Backward estimator in all cases. 

Vn. Conclusions 

The weighted LS estunator proposed in this paper yields accurate estunates of 

the parameters of an AR process excited by non-Gaussian white noise. The method 

utilizes the partial information available about the noise PDF (principally the form of 

the PDF to within a set of unknown parameters) and should thereby outperform the 

so-called robust estimators. It also reduces computation by avoiding solution of non- 

linear equations required by the MLE or a robust estimator. Computer simulations 

have justified the assumptions made in determining the estimator. The new technique 

does not suffer from convergence problems, and exhibits only a slight departure in 

performance from the CR bound for short data records. The weighted LS estimator for 

the AR filter parameters cam be used in conjimction with other estimation techniques 

directed towards assessment of unknown PDF parameters. In some situations it may 

tolerate a reasonable inaccuracy in the estimation of these parameters and yet produce 

an accxirate estimate of the AR filter parameters. 
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Table A: Parameters of the AR processes used for simulation 

Process 

II 

ai 

-1.352 

-2.760 

02 

1.338 

3.809 

as 

-0.662 

-2.654 

a* 

0.240 

0.924 

poles 

0.7exp[y2ff(0.12)] 
0.7exp[j27r(0.21)l 

0.98exp[y27r(0.11)] 
0.98exp[y27r(0.14)] 

Table B: Performance of the MLE, N = 1000 

value 

Sample 

mean Biaa^ 
Sample 

variance 

Cramer-Rao 

bound 

Process 
I 03 

a* 

-1.352 
1.338 

-0.662 
0.240 

-1.3527 
1.3391 

-0.6630 
0.2404 

4.900 X lO-'^ 
1.210 X 10-« 
1.000 X 10-« 
1.600 X 10-^ 

1.0221 X 10-* 
2.4601X 10-* 
2.4251X 10-* 
1.1035 X 10-* 

1.0491 X 10-* 
2.5961 X 10-* 
2.5961 X 10-* 
1.0491 X 10-* 

Process 
II 

02 

as 
a* 

-2.760 
3.809 

-2.654 
0.924 

-2.7597 
3.8081 

-2.6530 
0.9236 

9.000 X 10-* 
8.100 X 10-'^ 
1.000 X 10-« 
1.600 X 10-^ 

1.7445 X 10-5 
9.0097 X 10-5 
9.1303 X 10-5 
1.8496 X 10-5 

1.6278 X 10-5 
8.0163 X 10-5 
8.0163 X 10-5 
1.6278 X 10-5 
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Figure 1(a)    The weighting curve for Mixed-Gaussian PDF 
for    different e's 



Table C: Performance of the Forward-Backward Estimator, N 1000 

True 

value 

Sample 

mean Bias^ 
Sample 

variance 

Cramer-Rao 

bound 

Process 
I 

at 

-1.352 
1.338 

-0.662 
0.240 

-1.3482 
1.3326 

-0.6591 
0.2382 

1.444 X 10-5 
2.916 X 10-5 
8.410 X 10-« 
3.240 X 10-* 

1.0197 X 10-3 
2.3822 X 10-3 
2.3531 X 10-3 
9.6246 X 10-* 

1.0491 X 10-* 
2.5961 X 10-* 
2.5961 X 10-* 
1.0491 X 10-* 

Process 
II 

02 

03 

a* 

-2.760 
3.809 

-2.654 
0.924 

-2.7567 
3.8001 

-2.6447 
0.9197 

1.089 X 10-5 
7.921 X 10-5 
8.649 X 10-5 
1.849 X 10-5 

1.6569 X 10-* 
8.3418 X 10-* 
8.4388 X 10-* 
1.7083 X 10-* 

1.6278 X 10-5 
8.0163 X 10-5 
8.0163 X 10-5 
1.6278 X 10-5 

Table D: Performance of the Weighted LS Estimator, N = 1000 

True 

value 

Sample 

mean Bias^ 
Sample 

variance 

Cramer-Rao 

bound 

Process 
I 

Ol 

03 

04 

-1.352 
1.338 

-0.662 
0.240 

-1.3525 
1.3388 

-0.6628 
0.2402 

2.500 X 10-^ 
6.400 X 10-^ 
6.400 X 10-^ 
4.000 X 10-8 

1.1169 X 10-* 
2.6466 X 10-* 
2.6389 X 10-* 
1.1049 X 10-* 

1.0491 X 10-* 
2.5961 X 10-* 
2.5961 X 10-* 
1.0491 X 10-* 

Process 
II 

Ol 

03 

04 

-2.760 
3.809 

-2.654 
0.924 

-2.7595 
3.8075 

-2.6524 
0.9233 

2.500 X 10-^ 
2.250 X 10-« 
2.560 X 10-^ 
4.900 X 10-^ 

1.9003 X 10-5 
9.8729 X 10-5 
1.0043 X 10-* 
2.0422 X 10-5 

1.6278 X 10-5 
8.0163 X 10-5 
8.0163 X 10-5 
1.6278 X 10-5 



Table E: Performance of the Forward-Backward Estimator, N = 100 

True 

value 

Sample 

mean Bias2 
Sample 

variance 

Cramer-Rao 

bound 

Process 
I as 

a4 

-1.352 
1.338 

-0.662 
0.240 

-1.3328 
1.3095 

-0.6383 
0.2324 

3.686 X 10"* 
8.123 X 10-* 
5.617 X 10-* 
5.776 X 10-^ 

9.7580 X 10-3 
2.1536 X 10-2 
2.0595 X 10-2 
8.5016 X 10-3 

1.0491 X 10-3 
2.5961 X 10-3 
2.5961X 10-3 
1.0491 X 10-3 

Procesa 
II 

03 

as 
04 

-2.760 
3.809 

-2.654 
0.924 

-2.7372 
3.7494 

-2.5934 
0.8974 

5.198 X 10-* 
3.552 X 10-3 
3.672 X 10-3 
7.076 X 10-* 

2.4807 X 10-3 
1.2929 X 10-2 
1.2943 X 10-2 
2.5026 X 10-3 

1.6278 X 10-* 
8.0163 X 10-* 
8.0163 X 10-* 
1.6278 X 10-* 

Table F: Performance of the Weighted LS Estimator, iV^ = 100 

Thie Sample Sample Cramer-Rao 
value mean Bias' variance bound 

ai -r.352 -1.3476 1.936 X 10-5 1.9844 X 10-3 1.0491 X 10-3 
Proceaa 03 1.338 1.3293 7.569 X 10-5 5.2554 X 10-3 2.5961 X 10-3 

I as -0.662 -0.6536 7.056 X 10-5 5.2139 X 10-3 2.5961 X 10-3 
a* 0.240 0.2366 1.156 X 10-5 2.0403 X 10-3 1.0491 X 10-3 

ai -2.760 -2.7543 3.249 X 10-5 3.6109 X 10-* 1.6278 X 10-* 
Process 03 3.809 3.7936 2.372 X 10-* 1.9891 X 10-3 8.0163 X 10-* 

II as -2.654 -2.6380 2.560 X 10-* 2.0666 X 10-3 8.0163 X 10-* 
04 0.924 0.9168 5.184 X 10-5 4.3322 X 10-* 1.6278 X 10-* 
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Simple and Efficient Estimation of Parameters 

of Non-Gaussian Autoregressive Processes 

STEVEN KAY AND DEBASIS SENGUPTA 
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Abstract 

A new technique for the estimation of autoregressive filter parameters of a non- 

Gaussian autoregressive process is proposed. The probability density function of 

the driving noise is assumed to be known. The new technique is a two-stage pro- 

cedure motivated by maximum likelihood estimation. It is computationally much 

simpler than the maximum likelihood estimator and does not suffer from conver- 

gence problems. Computer simulations indicate that unlike the least squares or 

linear prediction estimators, the proposed estimator is nearly efficient, even for 

moderately sized data records. By a slight modification the proposed estimator 

can also be used in the case when the parameters of the driving noise probability 

density function are not known. 

This work was supported by the Office of Naval Research under contract No. 

N00014-84-K-0527. 



o 
o 

in 

c 
0) 
•H 

4-1 
<u o 

4-> 
o 

to <%J 
< •. o 

o o 

10^ 10^ 10^ 10 -1 

A=0.005 

A=0.01 

A=0.05 

A=0.1 

10 -2 

Figure 14 Asymptotic efficiency of M-estimator vs. B 
for Middleton's class A process 



o o 

1.0 

o 
'U o 

in 
» 

C) o 
•H 
4J 

^ 

o o 

ir- 

10^ 10^ 10^ 10 

e=0.5 

10' 

Figure 13 Asymptotic efficiency of M-estimator vs. p 
for the Mixed-Gaussian process 



o 
o 

A=0.005 
.A=0.01 

V=0.05 

Figure 10 Asymptotic efficiency of LS estimator vs 
for Middleton's class A process 



o 

Figure 9 Asymptotic efficiency of LS estimator vs.P 
for the Mixed-Gaussian process 



o 
^ p=2000 
TT p=1000 

O 
O 

CD_ 

O 
O 

» 
oo' 

o 
o 

m 10 
-3 

10 
e 

10 
-1 

Figure 6 Dependence of 3 on e and p 
in the Mixed-Gaussian case 



o 

0.00     1.50     3.00     4.50     6-00     7.50 
u 

u => — a B 

Figure 7 A typical approximation for the weighting curve 
in the Mixed-Gaussian case 



o 
o 
iD 

O 

u^ 

O 
o 

ro' 

o 

10 -4 10" 10- 10 -1 

p=2000 
p=1000 
p=500 
.p=200 
p=100 
p=50 
p=20 

Figure 4  Dependence of threshold on e 
in the Mixed-Gaussian case 
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Figure 5 Dependence of threshold on p 
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